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Introduction
Nonlinear Effects and Silicon-Plasmonics
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Introduction: Nonlinear Effects

Effects originating from material χ(3) the (3rd order nonlinear susceptibility)
 Magnitude is proportional to optical intensity I=|E|2. 
 Potential for all-optical functionality, i.e. “light controlling light”
 Focus only in intra-band interactions, i.e. Δω<<ω0

 Ultrafast/Instantaneous response:
 Kerr Effect  refractive index perturbation
 Two-Photon Absorption (TPA)  attenuation + carrier generation

 Delayed/Resonant response:
 Free-Carrier Effects (FCE)  From TPA in semiconductors
 Raman Scattering  Interaction with optical phonons
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Kerr-effect in NL-waveguides:
 Optical power (low)
 Material nonlinearity (high)
 Attenuation (low)
 Footprint (small)
 Phase matching

Free-Carrier Effects
 Depend on FC-density
 Induce additional…

 attenuation  limits power
 dispersion  “masks” Kerr

 More critical than TPA
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Introduction: Plasmonics

Surface Plasmon Polaritons (SPPs): EM surface waves coherently coupled 
to free electron oscillations on a metal/dielectric interface.

Metal at NIR  Drude model: Re{ε2}<0

 SPP waves propagate along the interface.

 Fields decay exponentially away from it.

Trade-off  losses vs. lateral confinement

 Suffer ohmic propagation losses (metal).

 Confinement surpasses Diffraction Limit.
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SPP at single metal/dielectric interface: 
An elementary plasmonic waveguide

Plasmonics for Optical Communications 
Integrated photonic components with…

 Lateral dimensions  far-below diffraction limit (λ/2)

 Control & Information signals collocated @ metal/dielectric interface

…leading to Nanoscale Opto-Electronic Devices.
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Scope: Guided-Wave Nonlinear Plasmonics

Objective: Design of novel integrated 
Components for optical communications with:
 all-optical functionality
 minimal footprint & interaction lengths
 reduced power threshold for Kerr
 limited FCE impairments

Motivation: High confinement  High waveguide nonlinearity
… leading to: smaller interaction lengths & reduced power
 Plasmonic waveguides can truly excel in this aspect!

Challenge: Counterbalance the inherent ohmic losses in plasmonic devices

Opportunities & Prospects: Towards efficient nonlinear plasmonics
 Synergy with dominant silicon-photonics
 Exploitation of novel materials such as highly-NL polymers
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Future integrated plasmonic circuit 
(Dionne et al, 2010) 
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Hybrid Silicon-Plasmonic (HSP) 
Waveguides

From Photonics to Silicon-Plasmonics
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Plasmonic Waveguides for Nonlinear Applications

Overview of SPP Waveguides (Berini & De Leon, Nat. Phot., 2012)
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Stripe

Poor confinement
Low losses

W>λ

Dielectric Loaded

Sub-optimal 
compromise… 

W×Η ~ (λ/3)2

Channel

High confinement
Dramatic losses

Η < λ/10

Hybrid

“Low-index gap” 
High confinement, 
moderate losses, 
material interplay

gap < λ/10

Advantages & Prospects:
 Gap material  nonlinear (or electro-optic)
 Small field penetration in Silicon  low TPA & FCE
 Carrier-sweeping circuit (Si-slab & electrodes)
 Planar  Easy fabrication (lithography)
 Efficient coupling to SOI-waveguide
 Thermal exhaustion (through Si- and metal-slab)

Oulton et al., 2008,
Nature Photonics
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Merging Silicon-Photonics & Plasmonics

Integration on SOI motherboard: 
 Host for both HSP- and Si-waveguides.
 Provides “seamless” interface w/ silicon photonics at minimal losses.
 Metals  Au, Ag or Cu (CMOS-friendly).

Thursday, 22 April 2021 9

Zhu et al., 2011, Optics Express
“Plasmonic nano-slot”Wu et al., 2010, Optics Express. CGS: “Conductor-Gap-Silicon”

Zhu et al., 2011, Optics Express
“Plasmonic nano-slot”Wu et al., 2010, Optics Express. CGS: “Conductor-Gap-Silicon”
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Nonlinear Schrödinger Equation 
+ Figures-of-Merit

Modeling Propagation in Si-comprising NL waveguides
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Models slowly-varying envelope propagation along the z-axis: A(z,t)

 Attenuation: Ohmic loss, confinement, surface-roughness, …
 Dispersion: From material & waveguide engineering  Vanishes in CW
 Nonlinearity: Instantaneous, complex-valued  SPM & TPA
 Free-Carrier Effects: TPA@Silicon  Dispersion & Absorption + Dynamics

The Nonlinear Schrodinger Equation (NLSE)
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2 -3 -1
TPA m WzP 

Carriers/Field overlap

Spatial matching of FC & field

Time-derivatives  (1) Dispersion terms and (2) FC-rate Equation

Simplifying the NLSE for CW
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Conventional nonlinear waveguides  Kerr and Linear-losses only

 Nonlinear phase-shift:                            and 

 Basic Figure-of-Merit FoM:                                 (in 1/Watt)

 Kerr-related effects (FWM, SPM, XPM etc) need a power level

Silicon-comprising waveguides  FCD & TPA+FCD affect the phase & loss

 CW-NLSE inspection: 

 A power-dependent FoM  but, useful when power is given…

Threshold-power: FCD-equal-to-Kerr 

where in (W/m2) ~constant (for a given w/g design)

 Kerr-vs-FCE FoM : (in m2)  major contribution γ/Ξ

Figure-of-Merit (FoM) Derivation
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Waveguide supports K modes  A system of K differential NLSE

Coupling via (1) Kerr/TPA and (2) free-carrier effects

* Multimode Waveguides: Coupled NLSE System
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Optimizing the HSP waveguide
Kerr-type Nonlinear Applications & low FCE impairments
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Optimization of HSP waveguides (1/3)

Targeted performance @λ=1.55um 
 γNL > 10 000 m-1W-1

 Aeff < 0.01 μm2 

 Lprop > 30 um
 rTPA < 0.1%  + lowest possible “Ξ” 

Tuesday, 19th March 2013 1616

Critical parameter: gap-size
 tech/fab limitation of g ≥20 nm

CGS Rib Wedge

Rib Wedge
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* Optimization of HSP waveguides (2/3) – Gap Effect

 Trade-off: confinement vs. loss

 Large gaps: modes degenerate 
into conventional Si-modes.

 Small gaps: 

 rTPA is considerably suppressed 

 Ξ increases for g<20nm.

 High γNL ~2000 m-1W-1

Tuesday, 19th March 2013 1717

HSP w/g mode parameters
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Optimization of HSP waveguides (3/3) : Inverted-Wedge

Significant improvement in both FoM   ≈ 0.4/W and ζfc≈300x10-12 m2

 Acute angles provide better performance.

 Weak dependence on tip-radius and wedge height.

 Marginal dependence on Si-wire dimensions and lateral misalignments

 A wedge in uniform DDMEBT provides an order of magnitude smaller FoM.

Tuesday, 19th March 2013 1818

The “paragon” of
HSP waveguides

Wedge-Parameter Investigation @ g=20nm 
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Comparison with prominent Si-comprising waveguides

Conventional Si-wire
400x340 nm2
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 Highest Lprop

 Lowest γNL

 Lowest FCE-threshold

 Moderate Lprop

 High γNL

 High FCE-threshold

 Smallest Lprop

 Highest γNL

 Highest FCE-threshold

HSP vs. Slot: comparable overall-performance @ 1/20 length 
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* Quantifying FCE power-thresholds (CW)

FCA
th NL/ IL 2.5dBAP a f    FCD

th / 0.7DP f r  
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NL-Threshold: FCA (and TPA)
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NL-Threshold: non-Kerr phase

non-Kerr 0  From opposite FCD 
and ΔLeff due TPA+FCA

Kerr in eff 0P L   γ and Leff from 
Linear case

FCE threshold-power
 Set L=Lprop different for each w/g 
 Integrate CW-NLSE for increasing Pin

 Quantify envelope phase and 
amplitude impairments  A=|A|eiΔΦ
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Directional Coupler 2×2 Switch
Nonlinear HSP-waveguide based component

Thursday, 22 April 2021 21
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The Nonlinear Directional Coupler Switch (NL-DCS)

Directional Coupler formed by a pair of HSP waveguides
 CROSS-state @ low input power  Linear regime
 BAR-state @ high input power  Nonlinear regime

Power-exchange (beating) in NL-DCS

Rough-estimate for switching power: Kerr 3cL  

sw
prop

3
[1 exp( / )]c

P
L L



 

Kerr NL in effcL P L    

( )
eff0.5 / S A

cL n  
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Operation Principle:
Self-focusing 
Induced coupler
de-synchronization
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The NL-DCS can be analyzed in the context of 
multi-mode NLSE framework
HSP waveguide parameters:
 Si-wire: 320x220nm2,
 DDMBER: g=20nm
 Ag-wedge: tw=100nm, w=53.2o, Rw=1nm
 Carrier Lifetime τfc =0.1nsec

Performance metric for switching:

Parametric Investigation: w/g separation

* NL-DCS: Symmetric & Anti-symmetric Supermodes

Tuesday, 19th March 2013 2323

Also supports
TE modes!
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NL-DCS: Switching Power

in @max{XT}

(dBW) (dBW)

12.7

16 18.5

14
14 16

P
empirical simulation

Power-penalty
~2 dB

due to FCE.
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Integrate coupled-NLSE system for 
the three w/g separations.

 XT vs. Pin at left input-port

Increasing w/g separation (dw): 

 reduces power @ 1st XT-peak (Psw)

 increases component length (Lc)  IL

 reduced XT values

Comparison with theoretical predictions:

NL-DCS Length = Lc

Observation:
A Pin-change of 10 dB corresponds
to an output-XT-change of >30 dB.

Application: 
Potential for improvement of 
the ER of modulated signals.



Dept. of Electrical & Computer Engineering • Aristotle University of Thessaloniki

CLEO®/Europe-IQEC • 12-16, 2013 – Munich, Germany

http://photonics.ee.auth.gr

NL-DCS: Boosting ER of Modulated Signals

 Numerical integration (SSFM) of NLSE-pair for the S/A TM-supermodes.

 Dispersive effects  negligible for these length-scales

 Output ER > 20dB (15dB improvement) + penalty of IL ~ 4.5dB.

Modulated Input @ left-input
 10Gbps NRZ 
 TM-polarization
 30ps rise/fall-time
 ER=5dB
 Ppeak=14 dBW

Tuesday, 19th March 2013 2525

HSP-wedge DCS:
 dSi=380nm & L=28.2um
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* NL-DCS: TE modes

 Lc(TM ) / Lc(TE) ~ 2  DCS functions as Polarization Splitter

 NL-switching power is too high  XT>10dB for Pin<20dBW

 Negligible polarization crosstalk (TE/TM) <-40dB

Tuesday, 19th March 2013 2626

TE supermodes 
(photonic-like)

FCD responsible 
for XT-peaking 

(improvement) for 
Pin ~12-15 dBW.
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High Power Illumination
Extremely Nonlinear Waveguides
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HSP waveguides: increased FCE-threshold allows for high peak-power.
 Inaccessible regime for Si-core & NL-Slot waveguides

 Assuming: length-scales of L~Lprop and Pin below FCE-threshold 

 Instantaneous nature of Kerr-type nonlinearity
High-Power + High-nonlinearity + Instantaneous = …

 Considerable perturbation in the material refractive-index
 Eigenmode-profile is perturbed (for nano-sized w/g)
 Waveguide parameters (linear & nonlinear) are affected 

What happens?

Thursday, 22 April 2021 28

Index-profile @ n ~ nDDMEBT
Kerr-Effect  +Δn
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Silicon

eff prop

NL TPA

fc fc,eff

&
&
&

n L
r


Become
Power-dependent!
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Iterative Algorithm  for a given Pin

1. Extract “linear” eigenmode (normally)
2. Normalize eigenmode’s E-field to Pin

3. Calc./apply refr. index perturbation
4. Extract eigenmode of perturbed w/g
5. Repeat (3)-(4) until convergence
6. Calculate mode parameters

NLSE: Mode-parameters now depend on |A(z,t)|2

SCEMS @ HSP waveguide TM00 mode:

Self-Consistent Eigenmode Solver (SCEMS)
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, ,
(3) *3

,NL 4
,

x y z

r E E  
 

   

2
,lin 2 0,NL | | /rr n   E

Implementing Step #3 

(Scalar)

(Tensor)

FoM drop  F & ζfc
Why? Index-contrast at 

the silicon/dielectric 
interface decreases. HSP 

w/g TM00 mode shifts 
towards the Si-area 

(from the gap) 

Threshold power

(vs. FCE-threshold)

2 in eff/ 0.01n P A 
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Example CW-NLSE

Perturbative effect:
 Appreciable only at higher-powers
 But, “masked” by FCE

 Pulsed NLSE: Similar behavior. Perturbation follows the shape on 
the pulse  no spectrum-deformation
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Optimized HSP waveguide
 Length equal Lprop

 Threshold power ~0dBW
 Reduces Kerr-Phase
 Extra IL are negligible
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High-Power Illumination – Prospects & Considerations

Prospects:
Materials/Platforms with higher nonlinearity (n2) and smaller FCE (e.g. τfc)
Interplay between linear and nonlinear indices of waveguide materials

Considerations:
 Perturbative NLSE formulation  Limits breached?
 Multimode waveguides  (more) power-dependent birefringence!
 Free-Carrier Effects

 Effective Lifetime  Accurate calculation + power-dependence
 Carrier Density limits  Soref & Bennett model validity range
 CW case  “worst case”

 Technological Concerns
 Dielectric-breakdown thresholds
 Nonlocal effects in metal interfaces (ponderomotive nonlinearity)
 Thermal generation & exhaustion
 Material properties at high powers – quintic nonlinear susceptibility?
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Conclusion & Perspectives
Nonlinear Plasmonics
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Concluding remarks & perspectives

Hybrid silicon-plasmonic waveguides: an alternative platform for 
photonic components with nonlinear functionality.
 Performance is catching up with that of Si-based components.
 Allow for reduced on-chip interaction lengths.
 Extreme suppression of impairments due to TPA and FCE.
 Opens new vistas, e.g. high-power illumination in integrated circuits

Technological steps that could unlock an order-of-magnitude boost in 
the nonlinear Figures-of-Merit (i.e., lower optical power threshold):
 Novel nonlinear polymers with n2~2×10-16 [m2/W], such as PDA/pTS.
 More accurate control in thin layer deposition, down to few-nm.

Future perspectives for nonlinear hybrid-plasmonics: 
 Resonant configurations can further assist 
the nonlinear response.
 Interplay between all-optical and semiconductor
dynamics

Tuesday, 19th March 2013 3333
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Nonlinear Effects in Hybrid Plasmonic Waveguides
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Thank you!
Questions?
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* Nonlinear Effects @ Silicon (SOI) Waveguides

Typical Parameters @ λ=1550nm operation
 Aeff ~ 0.1μm2

 Si-ridge ~ 400x300nm2

 γNL ~ 100m-1W-1

 n2 ~ 6×10-18 m2/W
 rTPA~0.2

 α ~ 1dB/cm
 τFC,eff ~1nsec (as low as 10ps)

Typical Performance  for Kerr-induced ΔΦNL~π
 Peak intensity ~1GW/cm2  ~1W @ Aeff~0.1μm2

 Waveguide length ~1cm
 Dispersion  typically negligible

Issues of nonlinear SOI w/g:
 TPA  more attenuation limits Kerr-effect
 FCA  even more attenuation…
 FCD  large effect + opposite-sign to Kerr
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Spectral broadening (due to SPM) 
reduction by TPA & FC-Effects

Yin & Agrawal, Opt. Lett., 2007 

Si

Cladding (typically air)

Oxide

Si-Wire TM-mode (Ey)
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Beam Propagation Method
Nonlinear/CW Applications

Thursday, 22 April 2021 37



Dept. of Electrical & Computer Engineering • Aristotle University of Thessaloniki

CLEO®/Europe-IQEC • 12-16, 2013 – Munich, Germany

http://photonics.ee.auth.gr

Validation against the BPM: basic concepts

A full-3D treatment of the problem
• Field-envelope propagation with a stepping algorithm

• Cross-section discretized with 2D finite elements

• Ideal for longitudinal structures

• Spectral method  CW radiation

Modeling Propagation under Nonlinear Effects
The waveguide’s refractive-index profile is modified at each Δz-step by 
the Kerr, TPA and FCE perturbations that are dependent on E(x,y,z)

• Results in an overall refractive-index modification

• Iterative trapezoidal-rule algorithm for numerical stability 

– Rule-of-thumb for BPM step-size

– Step is adaptively-set as power decreases

m z

BPM
direction

Cross-section 
planes

,

/ 40
max{| |}r T

z 


 



,T( , , )r x y z 

   2 2
0 ,lin 3o fc 0 0 ,3o ,fc 0 0 ,r r r rn n                 D E P P E E 

Kerr & TPA FCE
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Validation against the BPM: implementation of χ(3), TPA&FCE

Implementation of (3) nonlinear susceptibility (Kerr & TPA)
• Index-modification is a 2nd rank complex tensor (e.g. a 3x3 matrix)

 Accounts for hybrid-modes and tensor-anisotropy in χ(3) (e.g. silicon)

 Requires fully anisotropic BPM formulation

 Reduces to simpler form for isotropic χ(3)

Implementation of Free-Carrier Effects (FCD & FCA)
• Index-modification is a scalar complex proportional to the FC-density 
generated by TPA (+lifetime).

* *
,3o[ , ] 0.5 0.25r c cE E E E           

2
0 2

TPA
0

4( , ) (1 )
3c

n n
x y jr

Z
   

(3) *
,3o[ , ] 0.75r E E          (3) ( , )x y

, fc 0 fc2 ( , )r n u x y   
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Validation against the Beam Propagation Method

Comparison: Overall phase-shift (ΔΦNL) 
and nonlinear insertion losses (ILNL) for 
the three Lprop-long waveguides.

• Input-profile & reference-index from 
mode-solver. 

• Output ΔΦNL & IL are calculated with 
overlap-integrals on the input-mode.

BPM vs. NLSE: Only needs the material 
properties and waveguide geometry, but is 
restricted to CW or quasi-CW.

Attention: The local FC-density N(x,y) 
might exceed the validity-limit of the Soref-
Bennett model (1026/m3) for powers where 
the spatially-averaged FC-density <N>k

used in the NLSE is much lower.

Excellent agreement!
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m z

BPM
Direction

Cross-section 
planes

Design Method #2: Nonlinear Beam Propagation Method
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A more rigorous full-3D treatment of the problem
Beam Propagation Method (BPM)
 Field-envelope propagation with a stepping algorithm

 Cross-section discretized with 2D finite elements

 Ideal for longitudinal structures

 Spectral method  CW radiation

Modeling Propagation under Nonlinear Effects
 Cross-section refractive-index profile  Modified @ each Δz-step

 Kerr, TPA and FC-effects with respect to the electric-field intensity

 Scalar or Tensor implementation for refractive-index modification

 Iterative trapezoidal-rule algorithm  numerical stability @ larger Δz

 0 ,lin NL FC 0 0 ,lin ,NL ,FCr r r r r               D E P P E E
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Design Method #2: BPM-Implementation of NL Effects 
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 3D-BPM  Accounts for Heterogeneity in (x,y,z) for E, n & χ(3)

Implementation of χ (3) nonlinear susceptibility (Kerr & TPA)

Scalar  Index-modification is a scalar value
 Does not account for vector-nature

Tensor  Index-modification is a 2nd rank tensor
 Accounts for hybrid-modes and tensor-anisotropy in χ(3) (e.g. silicon)

 Requires fully anisotropic BPM formulation

 Reduces to simpler form for isotropic χ(3)

Implementation of Free-Carrier Effects (FCD & FCA)
Introduced as a complex scalar index-modification, proportional to the 
number of FCs generated by TPA (+lifetime).

* *
,NL[ , ] 0.5 0.25r c cE E E E           

,lin 2
TPA

0

4 (1 )
3

r
c

n
jr

Z


   

(3) *
,NL ,NL[ , ]r r E E   

         , , , { , , }x y z    

,FC lin FC FC 02 ( / 2 )r n n j a k    

2
,NL ,lin 2 0| | /r r n   E

rTPA included in n2
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Implementing the FCEs
Free-Carrier Effects in Silicon Waveguides
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Backup: Free-Carrier Effects Modeling

Electric Displacement:

Electric Polarization (due to FCs):

Relative Dielectric Constant:

• (only for materials with TPA≠0)

Real (phase) & Imaginary (loss) parts:

• Soref-model cross-sections

Free-Carrier Density:

• Rate Equation

TPA & |E|2 dependence:

• from all modes’ contributions
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,FC lin FC FC 0( , ) 2 ( / 2 )r x y n n j a k    
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 
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


    

1... 2

,TPA

1 Imag (2 )
N
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m n
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A hf

 
    
  


FCE parameters (G & N) are inserted:
(1) NLSE  “effective” value weighted over xy-plane  
(2) 3D-BPM  a function of (x,y) for the “local” |E| and TPA



Dept. of Electrical & Computer Engineering • Aristotle University of Thessaloniki

CLEO®/Europe-IQEC • 12-16, 2013 – Munich, Germany

http://photonics.ee.auth.gr

Scalar NLDCS
A Simpler Approach
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Backup: NL-DCS w/ Coupled-waveguide Eqs. + SPM

A heuristic approach: 
Coupled-waveguide formulation + SPM term

Parameters are common for the two waveguides
 Losses (α)  From single-waveguide analysis
 Nonlinearity (γNL)  From single-waveguide analysis
 Beating Length (Lc)  From super-mode Δneff
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